Earth Science Lab Performance Test

Lab Activity 1: Rock and Mineral Classification:

Skills required:

Rock Type Classification:

1. Identify an observable characteristic on a rock sample that can be used to classify it is as either Igneous, Sedimentary, or Metamorphic (see chart below)

Rock Type	Igneous	Sedimentary	Metamorphic
Observable Characteristics	 Interlocking Crystals Glassy Texture Gas Pockets (Vesicular Texture) 	 Contains fossil Clastic Texture pieces of rock cemented in mud Bioclastic texture Cemented shell fragments 	 Foliated texture Wavy distorted layers Banding (high grade of foliation, shown by alternating strips of different color)

Mineral Identification:

1. Identify 4 Physical Properties of a mineral sample

Physical Property	Luster	Cleavage vs. Fracture	Hardness	Streak
Description	 How light reflects off a surface 1.<u>Metallic</u>: Silver, brassy 2.<u>Nonmetallic</u>: Glassy, pearly, earthy reds and greens 	 How a mineral breaks 1.<u>Cleavage</u>: flat surface(s) 2.<u>Fracture</u>: jagged, rough, uneven surfaces 	Scratch test. Use the mineral to attempt to scratch a material to determine its relative hardness	Rub the mineral on a ceramic tile, and record the color of the powdered mineral residue

2. Use a flow chart to follow the minerals 4 physical properties to identify it

Lab Activity 2: Triangulating an Earthquake Epicenter:

Skills required:

1. Determine the difference in arrival times of the P and S waves on a seismogram

- 2. Use the difference in arrival times to determine the distance to the epicenter
 - a. Using the Earthquake P-Wave and S-Wave Travel Time Graph on p.11 ESRT
 - → Place a sheet of paper along the Travel Time axis as shown below
 - → Make 2 marks on the paper (shown below)
 - 1. At the zero minute mark
 - 2. At the difference in arrival times you established on the seismogram

- (shown above) Keep one mark on the P-wave curve and slide the piece of paper along the curve.
 Continue sliding the paper until the second mark is on the S-wave curve
 <u>Caution</u>: Be sure to keep the paper parallel with the vertical lines on the graph
- Read straight down the edge of the paper until it crosses the Epicenter Distance axis.
 (<u>Note</u>: The number is expressed in x 10³ km)
 - Example above = 3.4 x 10³ km = 3400 km

3. Draw a circle around the city you adjusted the compass to (shown below).

4. When 3 stations circles are drawn, all 3 will intersect at a single position... this is where the earthquake epicenter is located (see below).

Skills required:

- 1. Use pins and string to construct an ellipse
- 2. Use a metric ruler to measure (Record your values to the nearest tenth of a cm):
 - a. The distance between focal points
 - b. The length of the major axis
- 3. Calculate the eccentricity of your ellipse to the nearest thousandth using the equation below (NO UNIT)

Eccentricity = $\frac{\text{distance between foci}}{\text{length of major axis}}$

- 4. Describe the relationship between the eccentricity value of an orbit and how elliptical the orbit appears
 - Lower eccentricity means less elliptical
 - Higher eccentricity means more elliptical
- 5. Identify the relative orbital velocity of an object orbiting a star based on its distance from the star:
 - Moves with the fastest orbital velocity when closest to the star
 - Moves with the slowest orbital velocity when farthest from the star